
Published in IET Signal Processing

Received on 20th October 2011

Revised on 31st January 2013

Accepted on 8th March 2013

doi: 10.1049/iet-spr.2011.0385

ISSN 1751-9675

Reliable H
∞
filter design for sampled-data systems

with consideration of probabilistic sensor signal
distortion
Zhou Gu1,2, Engang Tian3, Jinliang Liu4

1College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037,

People’s Republic of China
2School of Automation, Southeast University, Nanjing 210096, People’s Republic of China
3Institute of Information and Control Engineering Technology, Nanjing Normal University, Nanjing 210042,

People’s Republic of China
4Department of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210046,

People’s Republic of China

E-mail: gzh1808@163.com

Abstract: This study is concerned with the reliable filtering problem for the sampled-data system subject to a class of probabilistic
sensor signals distortion. A new distortion model is developed by introducing a diagonal random matrix whose elements obey the
Gaussian distribution. The main purpose in this study is to design a filter such that the error dynamics of the filtering process
subject to the probabilistic sensor signal distortion is mean-square asymptotically stable. Based on the modified delay-central-
point (DCP) method and the convexity property of the matrix inequality, new criteria are derived for the existence of the
desired H∞ filters, by which it leads to much less conservative analysis results. Simulation results are provided to illustrate
the effectiveness of the proposed method.

1 Introduction

The filtering problem of sampled-data systems has been
attracting considerable research interests over the past
decades with a fast development of computer technology
[1–9]. In traditional studies, most of the researches focus on
single-rate digital systems. Filter design for the linear
sampled-data system was concerned in [10, 11], and the
problem of filter design for non-linear systems was studied
in [12, 13]. In [14–19], Wang and co-workers dealt with the
robust filtering problem for uncertain stochastic systems.
However, it should be mentioned that in real systems A/D
and D/A converters often work at different sampling rates
because of various computational load and external
disturbance etc.. Therefore another approach that is
time-varying sampling period is aroused, see, for example,
[6, 8, 9] and the references therein.
It should be noted that the aforementioned results are based

on an assumption that sensors operate without any flaws, that
is, the filter receives the value of the process accurately.
However, the distortion of the sensor usually happens in
practice because of some internal or external reasons, such
as, the aging of the components, the external disturbance
etc. To the best of our knowledge, the design of the
sampled-data filter subject to stochastic sensor distortion is
still an open problem, although there are some results on
filter design considering the abnormal sensor transmission

cases [20, 21]. The problem of reliable guaranteed variance
filtering against sensor failures is addressed in [20], where
the scale-factor of sensor failures belongs to an interval.
The fault model of the sensor, however, has its limitations
as it cannot cover the practical case. In [21], the filtering
problem for a class of discrete-time with consideration of
the missing measurement by a random variable satisfying a
certain probabilistic distribution on the interval [0, 1] is
concerned, however, the sensor output signal is not always
missing; sometimes it may fluctuate around the true or a
certain value.
This paper is concerned with the problem of H∞ reliable

filtering of the sampled-data system subject to a probabilistic
sensor signal distortion. The main contributions of the
obtained results are as follows: (i) a probabilistic sensor
signal distortion model for continuous-time system is
developed; (ii) the conservativeness of the derived H∞

performance analysis result is further reduced by combining
the delay-central-point (DCP) method [22] and the nature of
convexity property of the matrix inequality. Numerical
examples are given to show the effectiveness of the
proposed method.

Notation: Rn denotes the n-dimensional Euclidean space,
R

n×m is the set of real n × m matrices, I is the identity
matrix of appropriate dimensions, ·‖ ‖ stands for the
Euclidean vector norm or spectral norm as appropriate. The
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notation X > 0 (respectively, X < 0), for X [ R
n×n means

that the matrix X is a real symmetric positive definite
(respectively, negative definite). When x is a stochastic
variable, E{x} stands for the expectation of x. The asterisk
* in a matrix is used to denote the term that is induced by
symmetry. Matrices, if they are not explicitly stated, are
assumed to have compatible dimensions.

2 Problem formulation

Consider the controlled process is an linear time invariant
(LTI) system

ẋ(t) = Ax(t)+ Bv(t)

y(t) = Cx(t)

z(t) = Lx(t)

⎧

⎨

⎩

(1)

where x(t) [ R
n is the state vector, y(t) [ R

q is the
measurable output vector, z(t) is a signal to be estimated,
the process noise v(t) [ R

d including model uncertainties
and external plant disturbance belongs to l2[0 ∞]. A, B, C
and L are constant matrices with appropriate dimensions.
As shown in Fig. 1, the filter to be designed is based on the

sampled-data mode. The measurement noise cannot be
avoided, although measuring instrument is with high
accuracy. It leads to the sensor signal distortion as

ym(t) = Jy(t) (2)

where ym(t) is an actual measurement of the process output;
J = diag j1, . . . , jm

{ }

is a diagonal matrix, which indicates
the rate of signal distortion in every measurement channels;
The elements ξi{ξi|0 ≤ ξi ≤ σ, i = 1,…, m} are m unrelated
variables. Here, we define E ji

{ }

= mi and E{J} = �J.
In this paper, we are interested in obtaining the estimate of

the signal z(t) from the actual measured output. The full-order
filter to be considered is given as follows

ẋf (t)= Afxf (t)+Bfym tk
( )

tk ≤ t , tk+1, k = 0, 1, 2, . . .

zf (t)= Cfxf (t)

{

(3)

where xf (t) [ R
n is the state vector of filter, Af, Bf and Cf are

the filter parameters with appropriate dimensions to be
determined. tk denotes the sampling sequence.

Remark 1: in [20], the sensor failure was considered in the
process of the filter design, however, the scale-factor of the
sensor failure ξi does not include the failure statistical
information. In fact, the sensor fault model in [20] are only
two special cases modelled in (2). In [23], the authors
develop a fault model to describe an intermittent
measurement case by using the Bernoulli distribution,
however, it cannot cover the case of signal distortion.

Remark 2: we borrow and extend the idea in [21] to develop
the model of signal distortion in every measuring channels. In
[21], the authors mainly addressed the measurement missing
of the sensors for discrete-time systems by introducing a
random variable. Moreover, the authors assumed that the
random variables ξi takes value in the interval [0, 1], as a
matter of fact, the measured signal may be bigger than the
real value because of the measurement noise, which is a
common occurrence in practical systems, such as, offset
thermal drift; however, it has not caused a considerate
attention up to now.

It can be shown from (3) and Fig. 1 that the input of the filter
holds a constant value till the next sampling instant. Then, we
denote t(t) = t − tk for tk ≤ t < tk + 1. It is clear that

0 , h ≤ t(t) , tk+1 − tk ,
�h (4)

where h and �h are the lower and upper bounds of distance of
two sampling instants, respectively.

Defining z(t) = x(t)

xf (t)

[ ]

and e(t) = z(t) − zf(t). We can

obtain the following filtering-error system

ż(t) = �Az(t)+ �Ad + �Adr

( )

Hz(t − t(t))+ �Bv(t)

e(t) = �Lz(t)

{

(5)

where

�A =
A 0

0 Af

[ ]

, �Ad =
0

Bf
�JC

[ ]

, �Adr =
0

Bf (J− �J)C

[ ]

�B =
B

0

[ ]

, �L = L −Cf

[ ]

, H = [ I 0 ]

3 Main results

In this section, we propose an linear matrix inequation (LMI)
approach to solve the H∞ filtering problem formulated in the
previous section. We first give the following lemma and
definitions which will be used in the subsequent development.

Lemma 1: [24] For any constant matrix R [ R
n×n, R > 0,

scalars �t1 ≤ t(t) ≤ �t2, and vector function ẋ: −�t2, − �t1
[ ]

�
R

n such that the following integration is well defined, it holds that

− �t2 − �t1
( )

∫t−�t1

t−�t2

ẋ
T(t)Rẋ(t)

≤
x t − �t1
( )

x t − �t2
( )

[ ]T
−R ∗
R −R

[ ]

x t − �t1
( )

x t − �t2
( )

[ ]

(6)

Lemma 2: [25] Suppose M, N and Ω are constant matrices of
appropriate dimensions. Then

t(t)− �t1
( )

M + �t2 − t(t)
( )

N +V , 0 (7)

is true for any t(t) [ �t1 �t2
[ ]

if and only if

�t2 − �t1
( )

M +V , 0 (8)

�t2 − �t1
( )

N +V , 0 (9)
Fig. 1 Sampled-data system
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Definition 1:For a given function V :Cb
F0

−t2, 0
[ ]

, R
n

( )

× S,
its infinitesimal operator L [26] is defined as

LV xt
( )

= lim
D�0+

1

D
E V xt+D|xt

( )

− V xt
( )( )[ ]

(10)

Definition 2: System (5) is said to be asymptotically stable in
the mean-square sense with an H∞ norm bound γ, if the
following conditions hold:

1. System (5) with ω(t) = 0 is asymptotically stable in the
mean-square sense.
2. Under the assumption of zero initial condition, it satisfies
E ‖e(t)‖2
{ }

≤ g‖v(t)‖2 for any non-zero ω(t)∈ l2[t0, ∞].

For convenience of description, we define d = (�h− h)/2,
then [h, �h] = [h, h0]< [h0,

�h], where h0 = h+ d. The
following delay-dependent conditions can be got to
guarantee E LV zt

( ){ }

, 0 by constructing the Lyapunov
functional V(ζt) and checking the infinitesimal operator of
V(ζt) in both the case of t(t) [ [h, h0] and the case of
t(t) [ [h0,

�h].

Theorem 1: For given scalars h, �h and γ, if there exist
matrices P > 0, Qi > 0, Ri > 0 (i = 0, 1, 2), M, N, Af, Bf
and Cf with appropriate dimensions satisfying (11), then the
system (5) is mean-square asymptotically stable with H∞

norm bound γ.

Pi + Li + LT
i ∗ ∗ ∗

RA −R ∗ ∗
L̃ 0 −I ∗
Yij 0 0 −Ri

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

, 0 (i, j = 1, 2)

(11)

where (see equations at the bottom of the page)

P11 = P�A+ �A
T
P + HT

Q1 + Q2 − R0

( )

H

Y11 =
��

d
√

MT, Y12 =
��

d
√

NT, Y21 =
��

d
√

ST, Y22 =
��

d
√

TT

L1 = 0MN −M − N00[ ], L2 = 00S − TT − S0[ ]

R = h2R1 + dR1 + dR2, L̃ = �L 0 0 0 0 0
[ ]

A = H �A 0 H �Ad 0 0 B
[ ]

Proof: choose the Lyapunov function as

V zt
( )

= V1 zt
( )

+ V2 zt
( )

+ V3 zt
( )

where

V1 zt
( )

= zT(t)Pz(t)

V2 zt
( )

=
∫t

t−h

zT(s)HT
Q1Hz(s) ds+

∫t

t−�h

zT(s)HT
Q2Hz(s) ds

+
∫t

t−h0

zT(s)HT
Q0Hz(s) ds

V3 zt
( )

=h

∫0

−h

∫t

t+s

ẋ
T(v)R0ẋ(v)dvds+

∫−h

−h0

∫t

t+s

ẋ
T(v)R1ẋ(v)dvds

+
∫−h0

−�h

∫t

t+s

ẋ
T(v)R2ẋ(v)dvds

Use the infinitesimal operator (10) for system (5). It yields

E LV1 zt
( ){ }

= 2E zT (t)P �Az(t)+ �Adz t − t(t)
( )

+ �Bv(t)
[ ]{ }

E LV2 zt
( ){ }

= E zT (t)HT
Q0 + Q1 + Q2

( )

Hz(t)
{

− zT(t − h)HT
Q1Hz(t − h)

−zT (t − �h)HT
Q2Hz(t − �h) [

−zT t − h0
( )

HT
Q0Hz t − h0

( )}

E LV3 zt
( ){ }

= E hT(t)ATRAh(t)− h

∫t

t−h

ẋT(s)R0ẋ(s)ds

{

−
∫t−h

t−h0

ẋ
T(s)R1ẋ(s)ds−

∫t−h0

t−�h

ẋ
T(s)R2ẋ(s)ds

}

where

h(t) =
zT(t) x

T(t − h) x
T t − t(t)
( )

x
T t − h0
( )

x
T(t − �h) vT(t)

[ ]T

P1 =

P11 ∗ ∗ ∗ ∗ ∗
R0H −Q1 − R0 ∗ ∗ ∗ ∗
�A
T
P 0 0 ∗ ∗ ∗
0 0 0 −Q0 − R2/d ∗ ∗
0 0 0 R2/d −Q2 − R2/d ∗

�B
T
P 0 0 0 0 −g2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

P2 =

P11 ∗ ∗ ∗ ∗ ∗
R0H −Q1 − R0 − R1/d ∗ ∗ ∗ ∗
�A
T
P 0 0 ∗ ∗ ∗
0 R1/d 0 −Q0 − R1/d ∗ ∗
0 0 0 0 −Q2 ∗

�B
T
P 0 0 0 0 −g2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Using Lemma 1, we have

− h

∫t

t−h

ẋ
T(s)R1ẋ(s) ds ≤

z(t)

x(t − h)

[ ]T

−HT
R0H ∗

R0H −R0

[ ]

z(t)

x(t − h)

[ ]

(12)

Combining the results of E LVi zt
( ){ }

(i = 1, 2, 3), we can
obtain

E LV zt
( ){ }

≤ E 2zT(t)P �Az(t)+ �Adx t − t(t)
( )

+ �Bv(t)
[ ]{

+ zT(t)HT
Q0 +Q1 +Q2

( )

Hz(t)

− zT(t − h)HT
Q1Hz(t− h)

− zT(t − �h)HT
Q2Hz(t− �h)

− zT t − h0
( )

HT
Q0Hz t − h0

( )

+ hT(t)ATRAh(t)

+
z(t)

x(t − h)

[ ]T −HT
R0H ∗

R0H −R0

[ ]

z(t)

x(t− h)

[ ]

−
∫t−h

t−h0

ẋ
T(s)R1ẋ(s)ds−

∫t−h0

t−�h

ẋ
T(s)R2ẋ(s)ds

+ eT(t)e(t)− g2vT(t)v(t)

− eT(t)e(t)+ g2vT(t)v(t)
}

(13)

As mentioned above, t(t) [ [h, h0] or h0,
�h

[ ]

at any instant,
we define the following two sets

F 1 = t:t(t) [ [h, h0]
{ }

(14)

F 2 = t:t(t) [ [h0,
�h]

{ }

(15)

In the following, we will discuss E LV zt
( ){ }

for the two cases
in relation to t [ F 1 and t [ F 2.
Case 1: For t [ F 1: Applying Lemma 1, we can obtain
deduced

−
∫t−h0

t−�h

ẋ
T(s)R2ẋ(s)ds

≤ x t − h0
( )

x(t − �h)

[ ]T −R2 ∗
R2 −R2

[ ]

x t − h0
( )

x(t − �h)

[ ]

(16)

By using slack matrices method [27], we have

2hT(t)M x(t − h)− x t − t(t)
( )

−
∫t−h

t−t(t)

ẋ(s)ds

[ ]

= 0 (17)

2hT(t)N x t − t(t)
( )

− x t − h0
( )

−
∫t−t(t)

t−h0

ẋ(s)ds

[ ]

= 0

(18)

Note that

−2hT(t)M

∫t−h

t−t(t)

ẋ(s)ds ≤ t(t)− h
( )

hT (t)MR
−1
1 M

Th(t)

+
∫t−h

t−t(t)

ẋ
T(s)R1ẋ(s)ds (19)

−2hT(t)N

∫t−t(t)

t−h0

ẋ(s)ds ≤ h0 − t(t)
( )

hT(t)NR−1
1 N

Th(t)

+
∫t−t(t)

t−h0

ẋ
T(s)R1ẋ(s)ds (20)

Combining (13)–(20), we can deduce

E LV xt
( ){ }

≤ E hT(t) P1 +ATRA+ L1 + LT
1 + L̃

T
L̃

[ ]

h(t)
{

+ t(t)− h
( )

hT(t)MR
−1
1 M

Th(t)

+ h0 − t(t)
( )

hT(t)NR−1
1 N

Th(t)

}

(21)

where P1, A, L1, L̃ are defined in Theorem 1.
One can easily see that (11) corresponding to i = 1, j = 1,

2 is a sufficient condition to guarantee
E LV zt

( )

+ eT(t)e(t)− g2vT(t)v(t)
{ }

, 0 by using the
Schur complement and Lemma 2.
Case 2: For t [ F 2: Using a similar method to the Case 1, we
can obtain the same conclusion, that is
E LV zt

( )

+ eT(t)e(t)− g2vT(t)v(t)
{ }

, 0 under the
condition (11) corresponding to i = 2, j = 1, 2 for any
t [ F 2.
From the above discussions, we can conclude that

E LV zt
( )

+ eT(t)e(t)− g2vT(t)v(t)
{ }

, 0 (22)

for all t [ R
+ if the inequality (11) holds.

Under the zero initial condition, integrating both sides of
(22) from t0 to t and letting t→∞, we have

E ‖ e(t)‖2
{ }

≤ g‖v(t)‖2 (23)

Next, we consider the mean-square asymptotic stability of
augmented system (5). When ω(t)≡ 0 combining with (11)
and (23), we have E LV zt

( ){ }

, 0, which gives
E LV zt

( ){ }

, −1‖z(t)‖2 for a sufficiently small ε > 0, and
ensures the mean-square asymptotic stability of system (5)
with time-varying delay that satisfies (4). This completes
the proof.

Remark 3: A less conservative result is obtained by using the
convex property of matrix inequality and the idea of DCP in
[28]. One can further extend the DCP method to achieve
much less conservative results by dividing the delay
interval into several equal subintervals by using the similar
method. For the sake of technical simplicity, here we only
take two equal intervals.

Based on Theorem 1, we are in a position to derive a
criterion for the filter design.

Theorem 2: for given scalars h, �h and γ, if there exist matrices
P1 . 0, �P3 . 0, Pi . 0, Pi . 0 (i = 1, 2), P2,

�Af ,
�Bf ,

�Cf , M̂ , N̂ , Ŝ and T̂ with appropriate dimensions, such that

www.ietdl.org

IET Signal Process., 2013, Vol. 7, Iss. 5, pp. 420–426 423

doi: 10.1049/iet-spr.2011.0385 & The Institution of Engineering and Technology 2013

 17519683, 2013, 5, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-spr.2011.0385 by South K

orea N
ational Provision, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the following LMIs hold, then the system (5) is mean-square
asymptotically stable with H∞ norm bound γ

P̃i + L̂i + L̂
T

i ∗ ∗ ∗
RÃ −R ∗ ∗
L̂ 0 −I ∗
Ŷij 0 0 −Ri

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

, 0 (i, j = 1, 2)

(24)

P1 − �P3 . 0 (25)

Moreover, the parameters of H∞ filter in (3) are given by

Af = �Af
�P
−1

3 , Bf = �Bf , Cf = �Cf
�P
−1

3 (26)

where (see equations at the bottom of the page)

P̃11 =
P̃

11

11 ∗
P̃

21

11 P̃
22

11

[ ]

P̃
11

11 = P1A+ A
T
P1 + Q0 + Q1 + Q2 − R0

P̃
21

11 = �P3A+ �A
T

f , P̃
22

11 = �Af + �A
T

f

P̃31= C
T �J

T
�B
T

f −N
T
11−M

T
11A

T�P
T

3+C
T �J

T
�B
T

f +N
T
12−M

T
12

[ ]

P̃21 = R0 +M
T
11 M

T
12

[ ]

A = A 0 0 0 0 0 B[ ]

P̃51 = B
T
P1 B

T�P3

[ ]

, L̂ = L− �Cf 0 0 0 0 0
[ ]

Ŷ11 =
��

d
√

M̂
T, Ŷ12 =

��

d
√

N̂
T, Ŷ21 =

��

d
√

Ŝ
T, Ŷ22 =

��

d
√

T̂
T

L̂1 = 0 M̂ N̂ − M̂ − N̂ 0 0
[ ]

L̂2 = 0 0 Ŝ − T̂ T̂ − Ŝ 0
[ ]

M̂ = M
T
11 M

T
12 M

T
2 M

T
3 M

T
4 M

T
5 M

T
6

[ ]T

N̂ = N
T
11 N

T
12 N

T
2 N

T
3 N

T
4 N

T
5 N

T
6

[ ]T

Ŝ = S
T
11 S

T
12 S

T
2 S

T
3 S

T
4 S

T
5 S

T
6

[ ]T

T̂ = T
T
11 T

T
12 T

T
2 T

T
3 T

T
4 T

T
5 T

T
6

[ ]T

Proof: Defining

P = P1 ∗
P2 P3

[ ]

. 0, J = I 0

0 P
T
2P

−1
3

[ ]

and

�Af = P
T
2AfP2,

�Bf = P
T
2Bf ,

�Cf = CfP
−1
3 P2

�P3 = P
T
2P

−1
3 P2

Then P1 > 0 and P1 − �P3 . 0 if P > 0. Multiplying both
sides of (11) with {J, I, I, I, I, I, I, I, I} and its transpose. It
can be shown that (24) is equivalent to (11), where

M
T
11 M

T
12

[ ]

= M
T
1J

T, N
T
11 N

T
12

[ ]

= N
T
1J

T

Then the system (5) is mean-square asymptotically stable,
with the parameters as

Af = P
−T
2

�Af
�P
−1

3 P
T
2 , Bf = P

−T
2

�Bf , Cf = �Cf
�P
−1

3 P
T
2

(27)

It is algebraically equivalent [29] with Af = �Af
�P
−1
3 ,

Bf = �Bf , Cf = �Cf
�P
−1
3 . This completes the proof.

4 Numerical examples

This section aims to demonstrate that the method proposed
above not only with less conservativeness comparing with
the existed ones, but also with perfect reliability.

Example 1: Consider the linear system (1) with the following
parameters [30]

A =
0 3

−4 −5

[ ]

, B =
−0.5

0.9

[ ]

, C = 0 1
[ ]

,

L = [ 1 1 ]

Assume t(t) in (4) satisfies 0.2 < t(t) < 0.48. To illustrate
the result by using our proposed method is of less
conservativeness, in this example, we assume the sensor
signal without any distortion, that is J ; 1. Based on
Theorem 2, we can obtain γmin = 0.19, whereas γmin =

P̃1 =

P̃11 ∗ ∗ ∗ ∗ ∗
P̃21 −Q1 − R0 ∗ ∗ ∗ ∗
P̃31 0 0 ∗ ∗ ∗
0n×2n 0 0 −Q0 − R2/d ∗ ∗
0n×2n 0 0 R2/d −Q2 − R2/d ∗
P̃51 0 0 0 0 −g2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

P̃2 =

P̃11 ∗ ∗ ∗ ∗ ∗
P̃21 −Q1 − R0 − R1/d ∗ ∗ ∗ ∗
P̃31 0 0 ∗ ∗ ∗
0n×2n R1/d 0 −Q0 − R1/d ∗ ∗
0n×2n 0 0 0 −Q2 ∗
P̃51 0 0 0 0 −g2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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1.42 by using the method of Theorem 1 in [30]. Obviously,
our result is much better than that ones in [30].
Example 2: Consider the controlled process (1) with the
following parameters

A =
0 −1 −0.5

1 −2 1

0 −0.5 −1

⎡

⎢

⎣

⎤

⎥

⎦
, B =

−2

1

−0.5

⎡

⎢

⎣

⎤

⎥

⎦

C =
−10 0 0

0 50 50

[ ]

, L =
1 0 0

0 1 0

[ ]

v(t) =
1, 5 ≤ t ≤ 10 s

−1, 15 ≤ t ≤ 20 s

0, otherwise

⎧

⎨

⎩

Assume the network index t(t) satisfies 0.1 < t(t) < 0.48,
and the sensor signal is subject to probabilistic sensor
distortion with μ1 = 0.6.
Apply the LMI toolbox, a set of feasible solutions to LMIs

(24) with the performance level γ = 5.0 and distortion level
μ1 = 0.6 can be obtained. Furthermore, the filter parameters

are computed by (26) as follows

Af =
−4.8834 −0.5386 −0.7000

2.0471 −2.7664 1.0882

−2.0329 −1.5562 −1.8624

⎡

⎢

⎣

⎤

⎥

⎦

Bf =
0.2519 0.0039

0.0238 −0.0117

−0.0287 −0.0051

⎡

⎢

⎣

⎤

⎥

⎦

Cf =
−2.5990 −0.6188 −0.2964

−0.6329 −0.5406 0.0435

[ ]

(28)

By using the parameters given in (28), we can obtain the
simulation curves of z(t) and zf(t) under the case of the
sensor distortion occurring in the first channel (see Figs. 2
and 3), whereas Figs. 4 and 5 are curves of the system under
the sensor distortion using the normal filtering parameters,
that is the parameters are calculated by Theorem 2 by letting
μ1 = 1. Comparing with those two sets of figures, one can
obviously see that the designed filter produces a better
estimate of z(t) under the sensor signal distortion.

Fig. 2 Curves by using the reliable filtering parameters

Fig. 3 Curves by using the reliable filtering parameters

Fig. 4 Curves by using the normal filtering parameters

Fig. 5 Curves by using the normal filtering parameters
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5 Conclusion

In this paper, we addressed the problem of the reliableH∞ filter
design for sampled-data systems with a consideration of
probabilistic sensor distortion. To obtain a less conservative
result, an improved DCP method is proposed by using the
convexity property of the matrix inequality. LMI-based
conditions are formulated for the existence of admissible
filters, which ensure the filtering-error systems are
mean-square asymptotically stable with prescribed H∞

disturbance attenuation level. Two illustrative examples are
exploited to show the effectiveness of the proposed design
procedures.
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